
Beyond Political Boundaries: 

Constructing Network Models for 

Megaregion Planning

Dr. Stephen Boyles, Priyadarshan Patil, 
Venktesh Pandey, and Cesar Yahia 

December, 2018



ii 

A publication of the USDOT Tier 1 Center:  

Cooperative Mobility for Competitive Megaregions   

At The University of Texas at Austin  
 

DISCLAIMER: The contents of this report reflect the views of the authors, who are 

responsible for the facts and the accuracy of the information presented herein. This 

document is disseminated in the interest of information exchange. The report is funded, 

partially or entirely, by a grant from the U.S. Department of Transportation’s University 

Transportation Centers Program. However, the U.S. Government assumes no liability 

for the contents or use thereof.



i 

Technical Report Documentation Page 

1. Report No. CM2-11  

 

2. Government Accession 

No.  

  

3. Recipient’s Catalog No. 

ORCID: 0000-0002-5414-5438 

4. Title and Subtitle  

Beyond Political Boundaries: Constructing Network Models 

for Megaregion Planning 

5. Report Date 

December 2018  

6. Performing Organization Code  

7. Author(s)  

Stephen Boyles, Priyadarshan Patil, Venktesh Pandey, Cesar 

Yahia 

8. Performing Organization Report No. 

CM2-11 

9. Performing Organization Name and Address  

The University of Texas at Austin 

School of Architecture  

310 Inner Campus Drive, B7500 

Austin, TX 78712  

 

The University of Texas at Austin 

Department of Civil, Architectural, and Environmental 

Engineering  

301 E. Dean Keeton St. Stop C1761 

Austin, TX 78712 

10. Work Unit No. (TRAIS)  

11. Contract or Grant No. 

USDOT 69A3551747135 

12. Sponsoring Agency Name and Address  

U.S. Department of Transportation 

Federal Transit Administration 

Office of the Assistant Secretary for Research and 

Technology, UTC Program 

1200 New Jersey Avenue, SE 

Washington, DC 20590 

13. Type of Report and Period Covered 

Technical Report conducted October 2017-

October 2018  

14. Sponsoring Agency Code  

15. Supplementary Notes  

Project performed under a grant from the U.S. Department of Transportation’s University Transportation 

Center’s Program. 

16. Abstract  

The scale of urban planning is now focusing on megaregions in addition to metropolitan areas and states. The 

traffic assignment problem (TAP), used to study traffic flow patterns on networks, is a crucial step in urban 

planning. Megaregional networks transcend planning agency jurisdictions, challenging current network 

models and computational resources. This study aims to solve TAP on a megaregional scale by applying an 

algorithm based on the decomposition approach for the static TAP (DSTAP) that uses network 

decompositions based on network geography. In the first part of this research, we compare two partitioning 

algorithms for finding network partitions for megaregions by minimizing the number of subnetwork boundary 

nodes and the time required to solve DSTAP. The flow-based spectral partitioning generates flow balanced 

subnetworks which reduce the per iteration computation time and lead to faster convergence compared to the 

agglomerative partitioning algorithm. In the second part of this research, we propose a decomposition 

heuristic for large scale networks, allowing parallelization of TAP. The heuristic reduces the computational 

time for DSTAP by simplifying interactions within the subnetwork. For the uncongested Texas network, the 

proposed heuristic led to marginal 5% savings in computational time than state-of-the-art TAP methods, 

while for the congested scenario, the heuristic observed about 70% savings in computation time for the same 



ii 

1. Report No. CM2-11  

 

2. Government Accession 

No.  

  

3. Recipient’s Catalog No. 

ORCID: 0000-0002-5414-5438 

convergence level. However, the heuristic leads to a lower bound on the relative gap value at termination 

(called heuristic gap) which ranges between 9E-3 and 5E-4 for the experiments conducted on the Texas 

statewide network. 

17. Key Words  

Megaregions, Traffic assignment 

problem, Partitioning 

 

18. Distribution Statement 

No restrictions.  

19. Security Classif. (of report) 

Unclassified  

20. Security Classif. (of this page) 

Unclassified  

21. No. of pages  

44  

22. Price  

 

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized   



iii 

Acknowledgements 
 

We would like to thank Cooperative Mobility for Competitive Megaregions (CM2), a United 

States Department of Transportation (USDOT) Tier-1 University Transportation Center (UTC), 

for funding of this research. We are grateful for the support.  

 

Finally, we would like to thank Ehsan Jafari for sharing his original code for the DSTAP algorithm 

and all the members of the Sparta lab at the University of Texas at Austin for their support and 

cooperation during the shared use of the computational resources in the lab.  

  



iv 

Table of Contents 
 

Chapter 1. Introduction .................................................................................................................................................. 1 

Chapter 2. Partitioning ................................................................................................................................................... 3 

2.1. Background ........................................................................................................................................................ 3 

2.2. Literature review ................................................................................................................................................ 4 

2.3. Network partitioning for decentralized traffic assignment ................................................................................. 6 

2.3.1. Decomposition approach to the static traffic assignment problem (DSTAP) ............................................. 6 

2.3.2. Partitioning algorithms ................................................................................................................................ 9 

2.4. Demonstrations ................................................................................................................................................ 13 

2.4.1. Computation time per DSTAP iteration .................................................................................................... 13 

2.4.2. DSTAP convergence rate .................................................................................................................. 15 

2.5 Conclusion......................................................................................................................................................... 18 

Chapter 3 Decomposition Algorithm and Heuristic .................................................................................................... 20 

3.1. Background ...................................................................................................................................................... 20 

3.2. Literature review .............................................................................................................................................. 20 

3.3. DSTAP as algorithm ........................................................................................................................................ 22 

3.3.1 DSTAP example ........................................................................................................................................ 23 

3.3.2 DSTAP for Megaregions ........................................................................................................................... 27 

3.4. Modified DSTAP as a heuristic ........................................................................................................................ 28 

3.5. Comparison of partitioning algorithms ............................................................................................................ 31 

3.6. Conclusion........................................................................................................................................................ 37 

Chapter 4. Conclusion and Recommendations ............................................................................................................ 38 

References ................................................................................................................................................................... 40 

 



1 

Chapter 1. Introduction 

Megaregions cross state and political boundaries today and are characterized by trade and 

infrastructural connections. The key characteristic which makes megaregions unique is their size 

and complexity. A significant portion of the United States of America can be characterized in 11 

megaregions (1,2,3). The megaregions span multiple states and represent over 75% of the total 

population. For example, the north-eastern megaregion spans the states of Connecticut, Rhode 

Island, New York, Massachusetts, Pennsylvania, Delaware, New Jersey and Virginia, and contains 

as much as 17% of the current US population.  

 

This size of geographical and economic interaction has introduced a new scale of planning beyond 

the existing scale of models used at the state level or the county/city level maintained by state 

Departments of Transportation (DOTs) and Metropolitan Planning Organizations (MPOs) within 

the state, respectively. With increasing intra-megaregion trade and traffic (4,5), these statewide or 

county/city wide models are not appropriate for the megaregion scale. This mismatch of network 

model scale impacts long-range network planning process, specifically traffic assignment on the 

network. For example, consider the Texas Triangle which includes the cities of Austin, San 

Antonio, and Dallas. A change in the Austin arterial network impacts the traffic in the city, which 

in turns impacts the freight demand using the freeway and the truck routes taken to and from San 

Antonio and Dallas. 

 

The traffic assignment problem (TAP) is a well-studied problem in the traffic engineering 

community. TAP assigns vehicles to network routes as the last step of the four-step planning 

process. The resulting link flows provide metrics for planning (for instance, travel times, or total 

vehicle-miles traveled) and alternatives analysis. Despite advances in computation power and 

solution algorithms, solving TAP on a megaregion with many urban areas remains challenging.  

Obtaining the data needed to construct such models is also challenging, given the multiple 

jurisdictions involved. 

 

The primary motivation of this research is to address this deficiency in the scalability of traditional 

models. The new models and methods should not only focus on the interactions between multiple 



2 

cities and states, but also be computationally solvable and tractable, given current resources. This 

research aims to address this gap and develop methods to balance realism and accuracy of 

megaregion traffic assignment models.  

 

In the recent literature, a decomposition algorithm for solving the traffic assignment problem 

(DSTAP) on large scale networks has been proposed (6). The proposed decomposition is based on 

network geography which makes it convenient for extending this algorithm for megaregions. 

Additionally, experiments on the Austin network have shown 35-70% reduction in computation 

time for solving TAP using DSTAP in comparison with using the traditional algorithms like 

gradient projection algorithm. Aligned with the motivation discussed above, this research 

investigates the usefulness of DSTAP for improving the state-of-the-art of traffic assignment 

models for megaregions by answering following questions: 

1. How to partition a large megaregional network into smaller subnetworks for efficient 

parallel computation and reduction in computation time? 

2. How to quantify the interactions between these subnetworks allowing for changes in one 

subnetwork to impact the others and develop heuristics which simplify these interactions? 

 

We address these questions by comparing two partitioning algorithms on different real-world 

networks on their performance against different objectives and implementing DSTAP and its 

variant used a heuristic for solving traffic assignment on large networks. 

 

The rest of the report is organized as follows. Chapter 2 compares partitioning algorithms and 

demonstrates their performance for different transportation networks. Chapter 3 implements the 

DSTAP algorithm and its variant by modeling interactions between subnetworks differently than 

DSTAP. This heuristic is proposed to achieve computation time savings. The chapter also 

compares the partitioning algorithms from Chapter 2 on Texas Statewide Analysis Model network. 

The relevant literature review is presented as sections in Chapters 2 and 3 which are self-contained. 

Chapter 4 summarizes the work and discusses the directions for future work. 

 
  



3 

Chapter 2. Partitioning 

2.1. Background 

The traffic assignment problem is used to predict route choice and link flows for a given travel 

demand. The static version of this problem can be formulated as a convex program and solved 

efficiently using modern specialized algorithms (7,8,9). However, there are computationally 

demanding problems that require solving TAP multiple times or solving TAP on a large network. 

Those problems include bi-level mathematical programs with equilibrium constraints, solving 

TAP on statewide or national network models, and Monte Carlo simulations (6, 10).  

 

Methods for parallelizing the traffic assignment problem to decrease computation time have been 

studied recently e.g. (6, 11, 12). The DSTAP algorithm was developed to decrease computation 

time by solving the traffic assignment problem in parallel on partitions of the full network (6). This 

approach creates subproblems for each partition and a master problem that equilibrates traffic 

across subnetworks. The master problem also includes regional traffic that has an origin or a 

destination outside a certain subnetwork or in two different subnetworks. To find equilibrium in 

this master-subproblem framework, the DSTAP algorithm exploits the equilibrium sensitivity 

analysis method developed in Boyles (13) to generate artificial links that represent paths between 

network nodes. DSTAP is shown to converge to the global equilibrium solution for a general 

network and its computation time is stated to depend on the subnetwork partitions (6).  

 

The objective of this chapter is to identify and test partitioning algorithms that can improve the 

performance of a decomposition approach for solving the static traffic assignment problem. We 

seek to generate partitions that minimize the number of boundary nodes and the inter-flow between 

subnetworks. These requirements minimize the interactions between subnetworks, which 

influences the time needed to converge to a global equilibrium in a framework such as DSTAP. In 

addition, we seek partitions that minimize the computation time needed to solve the traffic 

assignment problem in parallel for the subnetworks. This refers to the per iteration lower level 

subproblems in DSTAP. With this motivation and objective in place, we test two algorithms in our 

analysis. The first algorithm is proposed by Johnson et al. (14) for objectives similar to those 



4 

required in this chapter. The second algorithm is based on flow weighted spectral partitioning. We 

compare the performance of the algorithms on real-world networks against the stated objectives. 

  

The remainder of this chapter describes methods to parallelize TAP and evaluates the performance 

of the partitioning algorithms. Section 2.2 reviews current methods for solving TAP and 

partitioning networks. Section 2.3 presents the algorithms evaluated and their use in the DSTAP 

framework. Section 2.4 presents demonstrations for different transportation networks. Section 2.5 

concludes the chapter. 

 

2.2. Literature review 

This section summarizes existing literature in the following areas: the latest advancements in 

methods for solving the traffic assignment problem, a parallelization approach to the traffic 

assignment problem, and the need for efficient network partitioning algorithms. 

  

Algorithms for solving TAP are generally classified as either link-based, path-based, or bush-

based. Link based methods work in the space of link flows and require less operational memory 

than path-based methods, but are much slower to converge (15, 16). Bush-based methods exploit 

the acyclic nature of paths that are used by origins at equilibrium (8, 9, 17, 18). Recent work also 

includes \epsilon-optimal improved methods for solving TAP on large problems (19). Although 

recent advancements have improved the state-of-the-art for solving TAP efficiently, there is still a 

need for faster methods. Computationally demanding instances include solving TAP on large-scale 

statewide models and solving TAP iteratively in network design problems with equilibrium 

constraints (11, 20). 

 

To address the computational demands of large scale or iterative traffic assignment problems, 

methods that aim to parallelize TAP have been developed. Bar-Gera (11) describes a 

parallelization approach based on the paired-alternative segments. The algorithms proposed in 

Chen and Meyer (21) and Lotito (22) also parallelize TAP by decentralizing the computations for 

each OD pair. DSTAP algorithm developed by Jafari et al. (6) parallelizes TAP by network 

geography instead of the traditional decomposition approach by OD pairs. This chapter aims to 



5 

identify partitioning algorithms that minimize the computation time per iteration of DSTAP and 

the total computation time required to reach convergence. Proofs of convergence and correctness 

of the algorithm are provided in Jafari et al. (6). 

  

The literature on network partitioning algorithms is extensive. These algorithms can be broadly 

classified into agglomerative/divisive heuristics, integer programming based approaches, and 

spectral partitioning algorithms. Integer programming formulations for the partitioning problem 

are proven to be NP-hard (23) and approximation heuristics have been proposed (23, 24).  

Heuristics for generating partitions based on agglomerative and divisive clustering have been 

recently used in various transportation related applications. Saedmanesh and Geroliminis (25) used 

an agglomerative clustering heuristic for generating partitions based on “snake" similarities for 

applications of the macroscopic fundamental diagram. Etemadnia et al. (23) developed similar 

heuristics for distributed traffic management. Johnson et al. (14) developed another heuristic for 

decentralized traffic management. This heuristic aims to minimize boundary nodes in subnetworks 

and to create subnetworks of similar size. Their heuristic performed better than the METIS 

algorithm proposed in (26).  

 

Spectral partitioning is an alternative approach for partitioning a graph (27, 28, 29, 30, 31). Bell 

(32) applied a capacity-weighted form of the spectral partitioning methods to investigate network 

vulnerability. Other transportation applications include air traffic control and urban traffic signal 

control systems (33, 34). The partitioning mechanism is based on the eigenvalues associated with 

the graph Laplacian. The partitions that result from spectral partitioning have low inter-cluster 

similarity (28). Additionally, using the normalized Laplacian generates graphs that are balanced 

by weight. This is an important feature since ignoring the balance requirement results in cuts that 

isolate a small number of peripheral nodes. For example, the minimum cut program that aims to 

minimize the weight between resulting partitions will often result in separating one node from the 

rest of the network (30). However, incorporating balance requirements causes cut problems to 

become NP-hard. Spectral partitioning is an approximate method for obtaining a cut with minimal 

cut cost while satisfying balance requirements (27, 30, 31). 

 



6 

2.3. Network partitioning for decentralized traffic assignment 

We consider a directed network 𝐺 defined by a set of nodes 𝑁 and set of edges 𝐴. Let 𝑀 be the 

node-node adjacency matrix for the network. 𝑀 is an |𝑁| × |𝑁| matrix, with elements 𝑚𝑖𝑗 equal 

to 1 if there is a link connecting node 𝑖 to 𝑗 and zero otherwise. We also define the weighted 

adjacency matrix 𝑀𝐺
𝐷 with elements 𝑚(𝑖,𝑗)

𝐺,𝐷
 equal to 𝑤(𝑖,𝑗) if (𝑖, 𝑗) ∈ 𝐴 and zero otherwise, where 

𝑤(𝑖,𝑗) is the weight assigned to link (𝑖, 𝑗) ∈ 𝐴. In this chapter, we assume 𝑤(𝑖,𝑗) to be the flow on 

link (𝑖, 𝑗). To construct a graph Laplacian, we use an undirected version of 𝑀𝐺
𝐷, denoted by 𝑀𝐺 , 

defined as the sum of 𝑀𝐺
𝐷 and its transpose. The elements of 𝑀𝐺  are 𝑚(𝑖,𝑗)

𝐺 . The graph diagonal 

matrix 𝐷𝐺  is defined as a diagonal matrix with principal diagonal elements in row 𝑖 as the sum of 

elements in row 𝑖 of 𝑀𝐺: 𝑑𝑖𝑖 = ∑ 𝑚(𝑖,𝑗)
𝐺

𝑗 . The graph Laplacian is defined as 𝐿𝐺 = 𝐷𝐺 −𝑀𝐺 . 

 

2.3.1. Decomposition approach to the static traffic assignment 

problem (DSTAP) 

We aim to partition a large-scale network into subnetworks such that the DSTAP algorithm is 

solved efficiently. In order to properly define the objectives of the partitioning algorithms, we 

review the main elements of the DSTAP algorithm developed by Jafari et al. (6). 

  

DSTAP is an iterative aggregation-disaggregation algorithm consisting of two levels, a master 

problem and a set of lower level subproblems corresponding to the respective subnetworks. A 

subproblem corresponds to solving the traffic assignment problem for a specific subnetwork. The 

master problem is used to model interactions between the subproblems. In the master problem, the 

subnetworks are aggregated using first order approximation methods based on equilibrium 

sensitivity analysis (13, 35). This results in artificial links representing the subnetworks in the 

master level problem. The algorithm proceeds by solving the subproblems in parallel, aggregating 

the subnetworks using artificial links, shifting flow towards equilibrium in the simplified master 

level network, obtaining subnetwork boundary flow from the master level iteration, and then 

proceeding to disaggregate the flow on subnetworks and solving the subproblems in parallel again. 

This procedure is repeated until convergence to a global equilibrium as shown in Figure 1.  



7 

 

Figure 1 Algorithm for the decomposition approach to the static traffic assignment problem 

The computational performance of DSTAP at each iteration depends on the number of artificial 

links. These links need to be updated at each iteration using equilibrium sensitivity analysis to 



8 

incorporate the latest information on travel costs. To reduce the number of artificial links 

generated, the number of boundary nodes associated with the subnetworks needs to be minimized. 

In addition to the regional artificial links that approximate subnetworks at the master level, there 

are subnetwork artificial links generated for each subproblem to represent flow that originates from 

a subnetwork then traverses other subnetworks before returning to the subnetwork. To reduce 

subnetwork artificial links, the flow traversing multiple subnetworks needs to be minimized. 

 

The computational performance at each iteration is also influenced by the time needed to solve the 

traffic assignment problem in parallel for the subnetworks. This represents solving the K lower 

level subproblems in Figure 1. The computation time needed to solve the subproblems in parallel 

is dominated by the subproblem that requires the greatest computational cost. Therefore, to reduce 

this computation time, the subproblems need to be balanced in size. This can be achieved by 

balancing the flow distribution across subnetworks, as opposed to having few subnetworks 

containing most of the travel demand.  

 

Consider the maximum excess cost termination criteria defined as the greatest difference between 

the longest used path and the shortest path for each OD pair, it was shown in Jafari et al. (6) that 

the maximum excess cost for the full network ϵ𝑂𝐷 is bounded by the total number of boundary 

points across subnetworks �̃� multiplied by the sum of the maximum excess cost for the master 

level regional network ϵ𝑂𝐷
𝑟  and the maximum excess cost for all subnetworks ϵ𝑂𝐷

𝑠  as shown in 

Equation (1). Therefore, to reach convergence faster, we need to increase the rate at which the 

bound in Equation (1) tightens. The subproblem maximum excess cost ϵ𝑂𝐷
𝑠  can be reduced by 

solving the subproblems to a low gap level. After approximating the subnetworks with artificial 

links, the master level maximum excess cost ϵ𝑂𝐷
𝑟  could be obtained. We note that if the inter-flow 

between subnetworks is minimized, then the artificial links representing the subnetworks will have 

a similar cost structure across successive iterations since the influence of external flows on 

subnetwork equilibrium is reduced. Therefore, the least cost path in the master level regional 

network would be relatively invariant across iterations. This implies that ϵ𝑂𝐷
𝑟  could be reduced at 

a higher rate. In the extreme case where the master level least-cost path is completely dominated 

by constant costs on artificial links, the maximum excess cost could be reduced to zero by placing 

all the regional flow on the path with the least cost artificial links. Thus, faster convergence could 



9 

be reached by minimizing the inter-flow between subnetworks. Convergence rate can also be 

increased by minimizing the number of boundary nodes �̃� as shown in Equation (1).  

𝜖𝑂𝐷 ≤ 2�̃�(𝜖𝑂𝐷
𝑟 + 𝜖𝑂𝐷

𝑠 ) (1) 

 

2.3.2. Partitioning algorithms 

We test the performance of two algorithms that aim to partition the network such that the 

computation time for a decomposition approach to solve traffic assignment is minimized. 

 

Domain Decomposition Algorithm 

The first heuristic algorithm tested is the shortest domain decomposition algorithm (SDDA) 

proposed in Johnson et al. (14). This algorithm works in an agglomerative fashion and constructs 

a given number of partitions such that the number of boundary nodes between the subnetworks is 

minimized (primary objective) and the partitions are balanced in size (secondary objective). SDDA 

only depends on the topological properties of the graph. This feature is desirable when limited 

information is available on link costs, flow between OD pairs, or other data that could form the 

basis of a partitioning algorithm. The computation time per DSTAP iteration is reduced by 

minimizing the boundary nodes and generating balanced subnetworks. Minimizing the number of 

boundary nodes would also improve the convergence rate. 

  

The sequential steps of the algorithm are shown in Algorithm 1. The algorithm constructs the 

partitions by identifying source nodes which are “far" from each other given a distance measure. 

The number of links on a breadth-first search tree between two nodes is used as the distance 

measure. This distance measure indicates the extent of separation of two nodes and is used to 

determine association of a node to the source nodes of the partitions. The reader is referred to 

Johnson et al. (14) for more information on this algorithm. 

ALGORITHM 1 Shortest domain decomposition algorithm (14) 

 

Step 𝟏: Initialization  

Let 𝑛𝑠 be the number of subnetworks/partitions to be generated  

Set 𝑅𝑠
𝑛: = MAX   

Step 𝟐: Determining first source node  

Set the rank of each node as the sum of the number of incoming and outgoing links  



10 

Choose the node with lowest rank 𝑠1 as the first source node  

Step 𝟑: Updating the rank and determining other source nodes 

for 𝑖 in 2: 𝑛𝑠  

Perform breadth-first search from every source node, 𝑠𝑗  ∀1 ≤ 𝑗 < 𝑖  

Determine the rank of node 𝑛 as a (𝑖 − 1)-dimensional vector whose elements are the 

distance of node 𝑛 from source nodes 𝑠𝑗 where 1 ≤ 𝑗 < 𝑖  

Choose the node which has the highest total rank (sum of all elements in the rank vector) 

Resolve ties in favor of nodes which have minimum value of the sum of pair-wise 

difference between each element of the rank vector  

Assign the chosen node as the 𝑖-th source node 𝑠𝑖  

Step 𝟒: Populate subdomain associated with each source node For each node, assign it to the 

source node to which it has the minimum distance   

Step 𝟓: Identify system boundary nodes and allocate the subnetworks 

for (𝑖, 𝑗) ∈ 𝐴 do 

if 𝑖 and 𝑗 are assigned to different source nodes then 

 Add 𝑖 and 𝑗 to the set of boundary nodes.  

Stop 

 

Spectral Partitioning 

Spectral graph theory is used to study network properties using the graph Laplacian. The 

eigenvalues and eigenvectors of the Laplacian matrix can be used to identify low cost graph cuts. 

The cost of a cut is defined as a ratio of the weights on cut links to the size of the smaller 

subnetwork separated by the cut (28, 30). 

  

The eigenvalues of an undirected graph Laplacian are real since the matrix is symmetric (27). Let 

𝜑 represent the eigenvectors and 𝜆 the eigenvalues. The relation between the eigenvectors and 

eigenvalues for the graph Laplacian is shown in Equation (2). According to Spielman (27), the 

eigenvalues can be defined using Equation (3), where 𝑆 is a vector space of dimension 𝑖, and 𝑖 is 

the index of eigenvalue 𝜆𝑖 arranged in an ascending order. The eigenvector for the corresponding 

eigenvalue can be found using Equation (4). 

 

 𝐿𝐺𝜑𝑖 = 𝜆𝑖𝜑𝑖 (2) 

 



11 

 𝜆𝑖 = min
𝑆 𝑜𝑓 𝑑𝑖𝑚 𝑖

max
𝑥∈𝑆

𝑥𝑇𝐿𝐺𝑥

𝑥𝑇𝑥
 (3) 

 

 𝜑𝑖 = argmin
𝑆 𝑜𝑓 𝑑𝑖𝑚 𝑖

max
𝑥∈𝑆

𝑥𝑇𝐿𝐺𝑥

𝑥𝑇𝑥
 (4) 

 

The Laplacian matrix 𝐿𝐺  is also positive definite and thus the eigenvalues are non-negative. The 

second smallest eigenvalue and associated eigenvector obtained from Equations (3) and (4) can be 

used to partition the graph. The resulting partition is an approximation of the cut that minimizes 

the ratio cut in Equation (5), where 𝑐𝑢𝑡(𝐴, �̃�) is the sum of the weights on the links separating the 

subnetworks 𝐴 and 𝐴 that are generated from the cut. The denominator of the ratio cut is the size 

of the smaller subnetwork 𝐴, where the size is determined by the number of nodes in 𝐴. Minimizing 

the ratio cut aims to find a cut with minimal weights on the links separating the subnetworks, and 

to maintain a balance in size of the generated subnetworks (30).  

 ratio cut =
𝑐𝑢𝑡(𝐴, �̃�)

|𝐴|
 (5) 

 

To improve the efficiency of DSTAP, we use a flow weighted version of the Laplacian such that 

the cut cost in Equation (5) represents the inter-flow between subnetworks. This will improve the 

convergence rate of DSTAP. We also normalize the Laplacian matrix using Equation (6) similar 

to methods in the literature (27, 29, 30, 31). This normalization will generate partitions that are 

balanced by the total flow within the partitions instead of the number of nodes in Equation (5). In 

the DSTAP framework, balancing the partitions by flow would reduce the per iteration 

computation time needed to solve the subproblems in parallel.  

 𝐿𝑠𝑦𝑚𝑚 = 𝐷𝐺
−1/2

𝐿𝐺𝐷𝐺
−1/2

 (6) 

 

After calculating the second smallest eigenvalue and associated eigenvector of the normalized 

Laplacian, the nodes of the network are sorted based on the magnitude of the corresponding 

element in the eigenvector. The sorted list of nodes is then divided into two parts based on the 

signs of the corresponding eigenvector elements. This will generate the required partitions (31, 

32). The full algorithm for the flow weighted spectral partitioning is shown in Algorithm 2. 



12 

  

Since the spectral partitioning method proposed is based on link flows, a few implementation 

issues need to be considered. The use of the second smallest eigenvalue as the basis for partitioning 

requires the graph to be connected. Specifically, the weighted adjacency matrix 𝑀𝐺  should result 

in a connected graph. Otherwise, the second smallest eigenvalue will be zero. To ensure that the 

component being partitioned is connected, a preprocessing stage precedes the spectral analysis. In 

this stage, the links with zero flow are identified. If those links separate the network into 

components such that each component has positive intra-flow, the spectral partitioning is 

performed for each component separately. However, in transportation networks, it is more likely 

to observe multiple components where only one component has flow. In our analysis, this occurred 

due to the existence of peripheral links that do not have any flow but are included in the network 

geometry. In this case, those links are ignored since they are not used, and should not influence 

the partitioning of the main component. 

  

Another consideration is the availability of flow values for the links in the network. In the case 

where the traffic assignment problem should be solved multiple times, solving the full network 

once to obtain link flows is worthwhile since the flows could be used to partition the network in 

subsequent iterations. If the flow values on the links change each time TAP is solved, the partitions 

could be updated iteratively. Alternatively, an approximate link flow solution could be obtained 

by solving centralized traffic assignment to a high gap value. 

 

Algorithm 2 Flow-weighted spectral partitioning 

 

Step 𝟏: Pre-process the network to remove links with zero flow  

If removing zero flow links creates multiple components with positive flow, then partition each 

component separately   

Step 𝟐: Calculate the flow weighted graph Laplacian   

Step 𝟑: Normalize the graph Laplacian using Equation (6)   

Step 𝟒: Get the eigenvector to be used for partitioning   

Step 𝟓: Order the nodes of the graph based on the eigenvector  



13 

Step 𝟔: Partition the network by dividing the ordered node list based on the sign of the 

corresponding eigenvector elements  

Decide if the obtained partitions should be divided further 

If further partitioning is needed, then repeat the algorithm for each subnetwork 

 

2.4. Demonstrations 

We compare the performance of algorithms on a hypothetical network consisting of two copies of 

the Sioux Falls network and on three standard test networks: Anaheim, Austin, and Chicago sketch 

(36). Considering the previous discussion on the required computation time in the DSTAP section, 

we divide our analysis into a section on the computation time per iteration and another section on 

the DSTAP convergence rate. We note that computation time needed for partitioning is 

insignificant for both SDDA and flow weighted spectral partitioning (less than 1 second on a 3.3 

GHz machine with 8 GB RAM) and is thus not included in the analysis. 

 

2.4.1. Computation time per DSTAP iteration 

As mentioned in the section on the decomposition approach for static traffic assignment, the 

computation time per iteration of DSTAP is dominated by the number of artificial links created 

and the time required to solve the subproblems in parallel.  

 

The number of regional artificial links created is determined by the number of boundary nodes in 

the subnetworks. Therefore, we compare the number of boundary nodes generated by each 

algorithm. Note that the primary objective of the SDDA algorithm is to reduce the number of 

boundary nodes between the subnetworks. 

  

The computation time required to solve the subproblems in parallel could be reduced by balancing 

the size of the subproblems. The flow weighted spectral partitioning method aims to minimize the 

flow balanced cut cost. If the cut cost is always equal to 1, the flow weighted spectral partitioning 

method will divide the flow equally among the subnetworks. This reduces the computation time 

needed to solve the subproblems in parallel. The SDDA algorithm creates subnetworks that are 

balanced by number of nodes as a secondary objective.  



14 

Table 1 shows the results for number of subnetwork boundary nodes generated by the algorithms 

and the computation time needed to solve the subproblems in parallel. Unless mentioned 

otherwise, we generate two subnetworks from each network. In terms of minimizing the number 

of boundary nodes SDDA performed better than the flow-weighted spectral partitioning method 

for the Austin and Anaheim networks. This result is expected since the objective of the flow-

weighted spectral partitioning method is to minimize the balanced inter-flow while SDDA 

minimizes the boundary nodes. This implies that the number of regional artificial links generated 

by an SDDA partition will be lower.  

Table 1 Comparison of Network Partitioning Algorithms 

Network  Boundary nodes  Subnet computation time (s)  Inter-flow   

Austin (SDDA)  174 632.83 186161 

Austin (Spectral)  329 746.81 137940 

Austin (4 subnets, SDDA)  296 290.97 368718 

Austin (4 subnets, spectral)  440 82.50 296870 

Anaheim (SDDA)  46 0.10 81991 

Anaheim (Spectral) 48 0.13 56539 

Chicago sketch (SDDA)  74 9.79 154791 

Chicago sketch (Spectral)  50 7.42 201603 

 

In terms of creating balanced subproblems, the flow weighted spectral partitioning method 

performed better than SDDA. The importance of balancing subproblems by flow is demonstrated 

by the partitioning of the Austin network into 4 subnetworks. The computation time needed to 

solve the subproblems in parallel using the SDDA partitions was approximately 3.5 times the 

corresponding time resulting from flow weighted spectral partitioning algorithm. Figure 2 shows 

the partitions generated for the Austin network. Subnetwork 1 in the SDDA partition contains 65% 

of the flow. The computation time associated with this subnetwork determines the computation 

time needed to solve the lower level subproblems at each iteration of DSTAP. The maximum share 

of network flow within a subnetwork resulting from the flow weighted spectral partitioning 

algorithm is 39%. For the Chicago sketch network, SDDA also creates heavily imbalanced 



15 

subnetworks with one subnetwork containing 90% of the flow. If this network was larger, the 

difference in subnetwork computation time would be significant. 

 

 

Figure 2 Partitioning of Austin regional network into four partitions. Left: flow weighted 

spectral partitioning. Right: SDDA. 

 

2.4.2.DSTAP convergence rate 

We also measure the rate at which the DSTAP algorithm converges towards a global equilibrium 

given the subnetworks generated from a specific partitioning procedure. We test this convergence 

rate using a hypothetical network with two copies of Sioux Falls. The network was created by 

replicating the Sioux Falls network and adding artificial demand between the two copies as shown 

in Figure 3. The artificial demand was kept low at 1.5% of the total demand within each network.  

Figure 3 also shows the subnetworks generated by the flow weighted spectral algorithm and by 

SDDA. The generated partitions demonstrate the importance of flow weighted spectral partitioning 

for networks which have intuitive geographic concentrations such as networks in statewide 

planning models with concentrated flow density in each city. The flow weighted spectral 

partitioning method was able to identify each Sioux Falls network as a separate component, as 



16 

opposed to partitions generated by SDDA. In terms of subnetwork boundary nodes, both partitions 

are equivalent. 

  

In the DSTAP section, we showed that faster convergence could be achieved if the inter-flow 

between subnetworks is minimized. The results in Table 1 and in Figure 3 indicate that the flow 

weighted spectral partitioning method is superior to the SDDA algorithm in terms of minimizing 

inter-flow. The only exception is for the Chicago sketch network. However, the partition generated 

by SDDA for the Chicago sketch network was heavily imbalanced with one partition containing 

90% of the flow. We expect the spectral partitioning method to avoid such cuts due to the flow 

balancing requirement. 

 

Figure 4 shows the convergence rate of DSTAP for the hypothetical double Sioux Falls network 

when partitioned using the flow weighted spectral partitioning method and SDDA. DSTAP 

converges to the global equilibrium solution after approximately 135 iterations using partitions 

generated from the flow weighted spectral partitioning algorithm. As for the SDDA partitions, the 

convergence rate of the DSTAP algorithm was low. This demonstrates the importance of 

minimizing the inter-flow between the subnetworks. 



17 

 

Figure 3 Partitioning of double Sioux Falls hypothetical network: Top: flow weighted spectral 

partitioning. Bottom: SDDA. The line type defines different partitions. 



18 

 

Figure 4 Iterative change of the maximum excess cost of the DSTAP algorithm when used with 

flow weighted spectral partitions and SDDA partitions of the hypothetical double Sioux Falls 

network.  

2.5 Conclusion 

This chapter evaluated the performance of different partitioning algorithms used for spatial 

parallelization of the static traffic assignment problem. The partitioning objective is to minimize 

the computation time needed to solve the static traffic assignment using a decomposition approach. 

The computation time per DSTAP iteration could be reduced by minimizing the number of 

subnetwork boundary nodes and the time required to solve the traffic assignment problem for the 

subnetworks in parallel. The convergence rate of DSTAP depends on the inter-flow between 

subnetworks. 

  

We tested two different methods for partitioning. The first approach is an agglomerative clustering 

algorithm developed by Johnson et al. (14) to minimize the number of boundary nodes between 

the subnetworks and to create partitions that are balanced in size. The second approach developed 



19 

is based on flow weighted spectral partitioning. The results indicate that the agglomerative 

clustering algorithm generates subnetworks that have a low number of boundary nodes. However, 

the subnetworks generated from this method may be heavily imbalanced as shown for the Austin 

and Chicago sketch networks. This leads to higher computation time for solving the DSTAP 

subproblems in parallel. The flow weighted spectral partitioning method generates flow balanced 

subnetworks which reduce the per iteration computation time. In addition, the inter-flow between 

subnetworks is minimized by the spectral partitioning algorithm, which leads to a faster 

convergence rate of the DSTAP algorithm. 

  



20 

Chapter 3 Decomposition Algorithm and Heuristic 

3.1. Background 

In this chapter, we consider a heuristic derived from the DSTAP algorithm where the subnetwork 

artificial links are ignored while solving each subnetwork. That is, we only include the interactions 

between the subnetworks as part of the master network and ignore the interactions between the 

subnetworks while directly solving TAP for each subnetwork. 

 

The chapter primarily contributes to the literature in two ways. First, the proposed heuristic offers 

an improvement in computation time over the existing state-of-the-art algorithms for solving 

traffic assignment on megaregions using a decomposition approach. This will be useful for 

developing efficient planning models in the future. Second, we motivate the need for developing 

efficient partitioning algorithms for decomposing large megaregions that can improve the heuristic 

gap and thus the efficiency of the algorithm.  

 

The rest of the chapter is structured as follows: Section 3.2 reviews existing research and provides 

an overview of the advances in the TAP solution methods and solving TAP for large scale 

networks. Section 3.3 presents a decomposition algorithm for static TAP (DSTAP), while Section 

3.4 presents application of DSTAP heuristic, by modeling artificial links differently to achieve 

computation time savings. Section 3.5 discusses partitioning algorithms, providing a comparison 

of two state-of-the-art algorithms. Finally, we conclude by summarizing the discussions and 

providing directions for future advances in Section 3.6. 

 

3.2. Literature review 

The static traffic assignment problem is an optimization problem that minimizes the Beckmann 

function, which is the sum of the integral of arc costs at given flows (7). Due to the convex nature 

of the problem, solution algorithms work iteratively by improving the quality of the solution with 

each iteration until the convergence is reached. Two convergence criteria used in practice are 

relative gap and average excess cost. The relative gap metric measures the difference between the 

current total system travel time and the total system travel time if each user was assigned to the 



21 

current shortest path, as a ratio. The average excess cost metric is the difference between the total 

system travel times averaged over the flow. This can be interpreted as the average delay faced by 

each user on the network. While relative gap has no such interpretation, it has a well documented 

convergence level for select link analysis or network design problem, which is network 

independent, and is usually accepted to be 10-6 (37). 

 

Link-based methods (15) for solving the TAP emerged as the initial algorithms of choice and were 

based on Beckmann’s formulation (7) of TAP. These algorithms prioritized low computational 

needs over quick convergence. As computational power increased, improved path-based methods 

like the gradient projection algorithm were proposed (16). Research then focused toward a smarter 

approach which shifts flows between paths without explicitly enumerating them, paving the way 

for bush-based methods (8, 9, 17, 18). Further advances have been made in solving TAP on large 

networks using methods that successively refine  ϵ-optimal flows on the network (19). A detailed 

overview of the field can be found in Patriksson (38). More recently, borrowing advances from 

the field of artificial intelligence, machine learning methods have been applied to the traffic 

assignment problem (39). 

 

Despite these advances, computational power and memory remains a bottleneck for traffic 

assignment, due to two factors. First, data collection methods have improved, allowing for higher 

resolution data about networks and yielding significantly more detail about the trip and network 

data. This includes non-traditional sources like mobile phone data (40, 41, 42) or GPS data (43, 

44), or even advanced vehicle identification (45). Secondly, more urban regions have expanded 

and coalesced into megaregions, consisting of several metropolitan areas, tied together by 

economic, social, demographic, and other factors, often crossing multiple county and state 

boundaries. This scale of planning naturally leads to huge networks being studied, testing the limits 

of current computational resources. In the recent years, multiple studies have concluded that 

existing proprietary software as well as researchers’ own implementations have been unable to 

process these networks and test scenarios in their entirety (46, 47, 48, 49). These scenarios include 

planning for evacuation, capacity expansion, or project evaluation, to name a few. Researchers 

have either broken down the scenarios into multiple parts or simplified the scenarios for an 

approximate assessment.  



22 

 

To address such large networks, research has also focused on parallelizing TAP. Bar-Gera (11) 

proposes an approach incorporating parallelization which depends on paired alternative segments. 

Some studies (21, 22) attempt to speed up computations by decentralizing and parallelizing 

computations for all origin-destination pairs. The network simplex problem has been exploited for 

large scale networks, as proposed by Zheng (50). Other studies have adapted origin-based 

assignment to speed up TAP convergence (51, 52). Jafari et al. (6) have proposed the DSTAP 

algorithm, decomposing the problem by network geography and solving the subnetworks in 

parallel, which significantly improves the computation time per iteration. This chapter discusses 

DSTAP, proposes exclusion of subnetwork artificial links from consideration to achieve 

computation time savings on megaregional networks, and compares the results with the existing 

state-of-the-art TAP solutions. 

 

3.3. DSTAP as algorithm 

Proposed in Jafari et al. (6), DSTAP is a decomposition algorithm that solves traffic assignment 

on networks which can be partitioned into multiple subnetworks. It is an iterative aggregation-

disaggregation algorithm which consists of iteratively solving two problems, called the master 

problem and the subproblem. The subproblem solves traffic assignment on each subnetwork while 

the master problem solves traffic assignment on a master network derived from all subnetworks. 

The master network consists of artificial links which represent an aggregation of the routes within 

each subnetwork. We call these regional artificial links. The subnetworks consist of artificial links 

which represent an aggregation of routes between two nodes in the subnetwork passing through 

other subnetworks. We call these subnetwork artificial links. The parameters of these artificial 

links are derived using first order approximation methods based on bush-based sensitivity analysis 

(13). Figure 1 shows a flowchart of the DSTAP algorithm. The algorithm starts with an 

initialization of the artificial link parameters in the master network, then solves the master network 

to an equilibrium which gives the flow on each artificial link. The flows on these links are used to 

update the demand while solving the subnetworks. The subnetworks are then solved in parallel 

with the updated demand. At the end of each iteration, bush-based sensitivity analysis is used to 



23 

update the parameters of artificial links. The process is repeated until the relative gap on the 

complete network drops below a threshold. 

 

3.3.1 DSTAP example 

We show the steps in one iteration of DSTAP on an example network. Figure 5 shows a nine-node 

grid network. We choose this simple network to illustrate the concepts of DSTAP; the 

computational savings on the network may not be relevant. 

 

This network is acyclic and the arrow direction represents the direction of link flow. The links with 

thicker line width have a free-flow travel time of 9 minutes and a capacity of 500 vehicles per 

hour, while the other links have a free-flow travel time of 4.5 minutes and a capacity of 250 

vehicles per hour. We construct an artificial subnetwork partition where nodes 2, 3, 5, and 6 belong 

to subnetwork 1 while the other nodes belong to subnetwork 2. The demand between different 

nodes in the network is also shown in Figure 5. Figure 6 shows the master network and 

subnetworks constructed from the complete grid network. 

 

 

Figure 5 Grid network and associated demand 

 



24 

 

Figure 6 Master network and subnetworks for DSTAP 

The master network consists of nodes at the boundary of each subnetwork, defined as the nodes 

on either end of a link cut by the subnetwork boundary. The physical links are the links in the 

complete network which have head and tail nodes in different subnetworks. The artificial links in 

the master network represent all paths which are completely contained in any subnetwork which 

connect two nodes. For example, link (1,9) in the master network represents path [1,4,7,8,9] 

contained in subnetwork 2. The master network consists of origin-destination pair 1 → 6 as this is 

the only pair whose nodes are in different subnetworks. 

 

The subnetworks are comprised of the nodes contained in the boundary of each subnetwork, 

physical links connecting any nodes within each subnetwork, and artificial links between nodes 

representing all paths connecting two nodes which pass through other subnetworks. For example, 

link (1,9) in subnetwork 2 represents paths [1,2,3,6,9] and [1,2,5,6,9] which pass through 

subnetwork 1. Subnetwork 1 contains origin-destination pair 2 → 6, while subnetwork 2 has the 

origin-destination pairs 1 → 9 and 4 → 8. 

 



25 

The DSTAP algorithm for this network proceeds as illustrated in Figure 1. Table 2 shows the 

values of flow updates for two consecutive iterations. In iteration 18, we first assign the master 

network demand from 1 to 6 onto paths [1,4,5,6] and [1,2,6]. Then, the flow along the artificial 

links in the master network is used to update the demand within the subnetworks. This demand is 

added to the original demand between the subnetwork nodes. For example, for origin-destination 

pair 2 → 6 in subnetwork 1, we update the demand as the sum of original demand between 2 and 

6 (2000 units of flow) and the demand coming into the network from the master network (1863.5 

units of flow). 

 

Then, each subnetwork is solved in parallel. We add an extra 732.31 units of flow to the demand 

between nodes 2 and 6 in subnetwork 1, as this is the flow on the artificial link (1,9) within 

subnetwork 2 in the previous iteration which is assigned as a demand because the paths represented 

by the artificial link (1,9) in subnetwork 1 pass through these nodes. 

 

Next, the algorithm updates the parameters for artificial links in master network and the 

subnetworks. These parameters are calculated using bush-based sensitivity analysis and represent 

the change in travel time between two nodes with variation in the demand between two nodes. For 

example, the parameters for link (1,9) in subnetwork 2 are calculated by observing the change in 

the travel times between nodes 2 and 6 if the flow between those nodes were to change by amount 

$\Delta x$. The new travel time function is given by 18915.29 + 30.94*(x-714.52), which suggests 

that if the flow on the link increases from its current value of 714.52 units of flow, then the travel 

time will increase by the rate of 30.94 time units for every unit increase in the flow. 

 

In the last step, the algorithm maps the flows obtained by solving the master network and the 

subnetworks onto the full network. This mapping is done by first finding an equivalent full-

network path for each path in the master or subnetworks; the flow on that path is then assigned in 

proportion to the flow between the nodes. For example, the flow on path [1,2,6] in the master 

network is mapped to paths [1,2,3,6] and [1,2,5,6] and the assigned flow is proportional to the flow 

split at node 2. 

 

 



26 

Table 2 Sample iteration data for DSTAP on example grid network 

 

 



27 

Figure 7 shows the variation in relative gap values with iteration number for the master network, 

each subnetwork, and the full (combined) network. As observed, even though the relative gap 

measures for master network and subnetworks oscillate, the full network gap decreases steadily 

with each iteration and drops below 1E-5 after 46 iterations.  

 

Figure 7 Progression of relative gap for the components of DSTAP 

 

3.3.2 DSTAP for Megaregions 

Solving traffic assignment on large-scale networks is time-intensive. DSTAP can be used to reduce 

the computation time on larger networks by decomposing a large network into subnetworks and 

solving the subnetworks in parallel. An instance of a large-network implementation of DSTAP is 

presented in Jafari et al. (6), where computational savings ranging between 35-70% are obtained 

on the Austin regional network. As noted in the study, the efficiency of the DSTAP algorithm 

depends on multiple factors, including the number of boundary nodes, size of the regional origin-

destination (O-D) matrix, and interaction between subnetworks. Thus, developing appropriate 



28 

subnetworks from a complete network is crucial in determining the reduction in computation time. 

Yahia et al. (53) in their experiments on an artificially-constructed double Sioux Falls network 

show that poorly-chosen subnetworks may lead the algorithm to not converge within a reasonable 

time. In the next section, we explore the possibility of using DSTAP as a heuristic for certain 

subnetworks. 

 

3.4. Modified DSTAP as a heuristic 

DSTAP, as an algorithm, is proven to converge to the TAP solution. But for applications such as 

megaregional TAP, where computation time is a significant constraint, the algorithm can be 

modified to act as a heuristic, cutting down on computation time. Subnetwork artificial links, 

representing flows assigned for an O-D pair but which pass through subnetworks not containing 

the origin and the destination, can be excluded from the implementation of DSTAP. For DSTAP 

without subnetwork artificial links, this flow is assigned to other routes in the pathset or, 

potentially, a new path or paths. This allows DSTAP to reduce computation time, as discussed 

later. A heuristic gap may be introduced, representing the aggregated reduction in pathsets and 

their impact on the solution accuracy. The heuristic gap is the minimum relative gap that the 

heuristic can achieve. With an appropriate choice of subnetworks, subnetwork artificial links do 

not come into play, allowing for 100% convergence without any heuristic gap. For other partitions, 

there exists a non-zero heuristic gap. The heuristic will asymptotically approach the heuristic gap, 

but the network relative gap can never fall below the heuristic gap. 

 

We conduct experiments of DSTAP as a heuristic on the Texas Statewide Analysis Model (SAM) 

network, which entirely encompasses the Texas Triangle megaregion. Provided by Texas 

Department of Transportation, the network has 122,658 links and 44,796 nodes. The overall file 

contains the road network, along with airline routes, train routes and waterways. For the purpose 

of this experiment, we use only the road network. The dataset provides all basic characteristics of 

the network, as well as additional future forecasts and tolls. Figure 8 shows the network under 

consideration. 

 



29 

 

Figure 8 Visualization of the Texas SAM network 

 

Figure 9 shows the computational performance of the DSTAP heuristic, contrasted with gradient 

projection, a path-based algorithm (16). We solve the Texas network to a relative gap of 10-4 for 

two demand levels. The demand is reduced to 40% of the original to solve an uncongested network. 

For the reduced-demand scenario, computational performance is similar, with both heuristics 

dropping to 10-4 relative gap within almost identical computation time. Being in an uncongested 

state, this occurs because most (>95%) traffic is on the shortest path, thus leading both heuristics 

to achieve the target within a few iterations. For the full-demand scenario, we observe that the 

DSTAP heuristic drops to a gap of 0.01 in 1907 seconds, while gradient projection takes 6939 

seconds to achieve the same relative gap, an increase of 21% in computation time. However, the 

gap for the DSTAP heuristic does not drop below 0.009 after subsequent iterations, indicating a 

heuristic gap value of 0.009, which is reasonable for large scale networks. This gap value is 

achieved in ~4,000 seconds. 

 



30 

 

Figure 9 Computational comparison of DSTAP heuristic and Gradient Projection 

 

Based on the results, the proposed heuristic saves computation time to the same gap level, 

especially for congested network flows. Despite being based on subnetworks not explicitly 

designed to minimize the heuristic gap, there is a noticeable performance gain. The traffic 

assignment problem is, at a minimum, non-linear in nature. Splitting a large network of size N into 

subnetworks, solving them in parallel, and then solving a sketch of the master network thus allows 

for reduction in computational operations. As a heuristic, we reduce the problem size further by 

not creating additional links, thus reducing the number of operations needed and resulting in a 

faster solution. The downside of this method is the introduction of the aforementioned heuristic 

gap, which restricts some flows that are never assigned to the right paths. 

 

The heuristic gap is caused by paths which “zig-zag” between multiple partitions; that is, the path 

starts in a subnetwork, passes through one or more distinct subnetworks (including potentially 

returning to the original subnetwork) before terminating in the original subnetwork. All demand 

from these paths is forcibly assigned to paths which are contained within the original subnetwork. 

We can reduce the heuristic gap by choosing appropriate subnetworks. Consider the Austin 

network shown in Figure 10. If the network is divided along the river, resulting in a northern and 

southern subnetwork, the DSTAP heuristic has a heuristic gap lower than 10-6 (6). This is to be 

expected from Austin topography, with bridges on the river being far apart; the equilibrium path 

for a traveler will not cross the river at a bridge, drive to another bridge, and cross back to the 

original side of the river to reach their destination. These examples lead to the logical question 



31 

about the best choice of subnetworks for a given network. Section 3.5 discusses partitioning 

algorithms and compares them with respect to DSTAP requirements. 

 

 

Figure 10 North and south subnetworks for the Austin network (Source- (6)) 

 

3.5. Comparison of partitioning algorithms 

The aim of a partitioning algorithm is to divide a network graph into two or more subnetworks, 

typically based on flow balance or minimizing the number of boundary nodes while balancing the 



32 

subnetwork size. Network partitioning methods for transportation networks typically fall into one 

of three categories: agglomerative clustering heuristics, integer programming-based methods, and 

spectral partitioning (SP) algorithms. Agglomerative heuristics involve methods based on greedy 

heuristics focusing on flow (23) or “snake” similarities (25). Johnson et al. (14) proposed a 

heuristic focusing on creating subnetworks of similar size by reducing the number of boundary 

nodes. Integer programming methods have been proven to be NP-hard (23). Researchers have 

proposed approximations to these formulations to reduce computation time (22, 24). Spectral 

partitioning methods are based on the eigenvalues of the Laplacian matrix, balancing the 

subnetworks by the chosen weight (27, 28, 29, 32, 34).  

 

For the purpose of this chapter, we compare two partitioning algorithms from Chapter 2 and 

discuss the properties of partitioning algorithms suited to traffic assignment. We study and 

compare the shortest domain decomposition algorithm (SDDA) and the spectral partitioning 

algorithm for generating subnetworks for the Texas network. We briefly review the algorithms 

below. 

 

SDDA seeks to find partitions which minimize the number of boundary nodes generated between 

the partitions. For a given number of partitions n, it first finds a source node for each partition from 

which the entire partition is to be constructed. The process starts with the first source node, then 

finds the next source node by finding a node farthest away from the original source node using a 

distance metric, then repeats the process to find all source nodes. The metric can be modified to 

other variables, such as time or number of links on a breadth-first search (BFS) tree. After source 

node selection, all nodes are assigned a rank vector based on their location in the BFS tree 

originating at each source. The node is assigned to the subnetwork of the source with the lowest 

rank. The boundary nodes and links are then calculated and are stored for further use. The 

algorithm is shown in Algorithm 1. SDDA needs only the network and link characteristics as input, 

and provides a list of nodes in each subnetwork. 

 

Spectral partitioning seeks to find partitions that minimize the inter-flow between subnetworks 

and generates subnetworks which are balanced in size. The partitioning algorithm, shown in 

Algorithm 2, requires network and link data, along with approximate flow values on each link. It 



33 

calculates the minimum-cost cut across the network by computing eigenvector and eigenvalues of 

the Laplacian matrix. A detailed mathematical explanation of the algorithm can be found in Yahia 

et al. (53). For this algorithm, two major concerns are the availability of flow data and network 

connectivity. The link flow data may not be available before start of the simulation and, if the 

network is disjoint, the algorithm may terminate prematurely. However, these concerns are minor 

for applications in megaregions planning. The transportation network for megaregions, by 

definition, forms a connected graph obviating the second concern. Next, traffic assignment needs 

to be solved multiple times for long term planning purposes ensuring that the partitions generated 

from flows obtained after the first run can be reused for the future applications of the DSTAP 

heuristic. 

 

Figure 11 compares the plots of partitions generated by the SP and SDDA methods. As can be 

observed, the generated partitions are different from each other. In SDDA partitions, multiple 

urban areas (depicted in green) are separated into different partitions with the partition passing 

through the Austin city center. This type of partitioning may cause a high heuristic gap when 

solving the modified DSTAP on the generated subnetworks. The spectral partitioning algorithm 

does better at keeping the major cities with many inter-regional trips within one partition so that 

the interflow between the partitions is minimized. 

 

  

 

Figure 11 SDDA (left) and spectral partitioning (right) outputs for the Texas network 

 

While only the two-partition case is explored in depth here, a few important observations are 

presented for higher numbers of partitions. SDDA selects source nodes sequentially, based on the 



34 

cumulative rank vector of all nodes. This implies that if a node is a source for the kth partition, for 

any number of partitions greater than k, that node continue to be a source. This results in issues at 

higher numbers of partitions, when two sources end up close to each other, resulting in one 

generating a partition with very few nodes. On the Texas network, the source nodes for the 7th and 

8th partitions would generate partitions of eight nodes for all cases in which they were used, due to 

proximity with source node 1 and source node 3, respectively. Figure 12 shows these cases, with 

the partitions being visible near Texarkana, TX and Brownsville, TX. This static selection of 

source nodes can cause an imbalance in parallelizing TAP for many subnetworks. SDDA, due to 

the lack of flow data, was shown to divide multiple urban areas (e.g. Austin, San Angelo) into 

more than two partitions for higher number of partitions, as shown in Figure 13.  

 

Figure 12 Eight- and nine- partition case for the SDDA algorithm (each color denotes a different 

partition) 



35 

 

Figure 13 Five-partition case for SDDA, with a focus on the Austin area 

 

Spectral partitioning, while providing subnetworks which are better suited for DSTAP, alters its 

partitions with changes in input flow. The important implication here is that approximate flows 

allow for partitions which are equally good when compared to flows at convergence. Figure 14 

looks at the regions with flow difference for SP partitions at two different input flow convergence 

levels, 1E-2 and 1E-5. On the SAM network, 94.6% of the links had exactly identical flow for the 

two convergence levels. Of the 5.4% links where flow differed, 90% had a flow difference below 

3% and 80% had a flow difference below 1.4%. The nodes in red are connected to links where 

flow differs. Figure 15 shows the SP algorithm output for 4 partition case, where it can be observed 

that urban regions have been left within one partition, unlike the SDDA algorithm partitions in 

Figure 13. 



36 

 

Figure 14 Areas with flow difference between two different convergence levels 

 

Figure 15 SP partition for the 4-partition case 

 



37 

3.6. Conclusion 

This chapter focuses on network models for megaregions, and their application for the traffic 

assignment problem. DSTAP is shown to be an efficient algorithm for megaregion networks, 

suited to take advantage of the megaregional geography to aid in parallelizing TAP computations 

by decomposing the network. It solves TAP on the megaregion network by iteratively solving TAP 

on the sub-networks in parallel, then solving the master network and finally, stitching the flows. 

Removal of subnetwork artificial links turns DSTAP into a heuristic for megaregional TAP. The 

heuristic has simplified interactions between different subnetworks, achieving better computation 

times on megaregional geography. When contrasted with the gradient projection algorithm, it 

provided marginal computational savings (~5%) for uncongested networks for similar gaps, but 

significant time savings (~70%) for congested networks. 

 

DSTAP as a heuristic introduces a heuristic gap, representative of the differences between the 

actual and simplified interactions within subnetworks. The heuristic gap is heavily affected by the 

choice of subnetworks which dictate the level of interaction between subnetworks. Various 

partitioning algorithms were surveyed, with two being implemented: shortest domain 

decomposition algorithm and spectral partitioning. SDDA is an agglomerative clustering 

algorithm, requiring only the network information, and partitions the network aiming to create 

balanced partitions with a minimum number of boundary nodes. SP is a flow-weighted clustering 

algorithm, aiming to find the min-flow cut while balancing the partitions using total flow. Using 

the partitions from both algorithms as input for modified DSTAP, we observe that the heuristic 

gap was lower for the SP partitions (5E-4) as opposed to SDDA partitions (0.009). A few 

advantages and drawbacks of each algorithm are discussed, concluding that SP is better suited for 

transportation planning applications.   



38 

Chapter 4. Conclusion and Recommendations 

Motivated by the challenges in the scalability of traditional models used for solving TAP on large-

scale megaregional networks, this research evaluated the usefulness of DSTAP algorithm which 

uses a decomposition approach to perform traffic assignment. The decomposition is performed 

based on network geography which makes this algorithm useful for solving TAP on megaregions, 

where each component of the megaregion can be modeled as a detailed subnetwork and the 

interactions between these components can be modeled using artificial links in a master network.  

 

The research focused on two questions: how to determine appropriate partitions of large-scale 

networks and how to quantify and simplify interactions between subnetworks for faster 

computation time. For the first research question two different partitioning algorithms were tested 

on different large-scale networks. These include the SDDA algorithm that minimizes the number 

of boundary nodes between the subnetworks and creates partitions that are balanced in size and 

the flow-weighted spectral partitioning algorithm that generates partitions with less interflow. It 

was shown that compared to the SDDA algorithm, the partitions generated by spectral partitioning 

had higher number of boundary nodes while the average computation time per iteration for solving 

DSTAP was lower. The spectral partitioning also generated partitioning which were more balanced 

in size compared to the SDDA partition leading to faster convergence rate. For the second research 

question, subnetwork artificial links were removed turning DSTAP into a heuristic for solving 

TAP on large-scale networks. A heuristic gap was introduced representing the differences between 

the actual and simplified interactions within subnetworks. For the Texas SAM network, heuristic 

gaps of 0.009 and 5E-4 were achieved using SDDA and spectral partitions, respectively. The 

heuristic gap is shown to be affected by the choice of subnetworks which dictate the level of 

interaction between subnetworks. In terms of computation time savings, when contrasted with the 

gradient projection algorithm, the heuristic provided marginal computational savings (~5%) for 

uncongested networks for similar gaps, but significant time savings (~70%) for congested 

networks. 

 

Based on the findings of this research, we make following recommendations. First, DSTAP 

algorithm (6) can be used for solving TAP on large-scale megaregional networks with different 



39 

subregions modeled as subnetworks. To determine the boundaries of the subnetworks, the spectral 

partitioning algorithm is recommended as it finds subnetworks such that the interflow between the 

subnetworks is minimized. Second, DSTAP heuristic proposed in Chapter 3 can be used as an 

approximation for solving TAP under limited computational resources. The heuristic gap depends 

on the choice of network partitions and thus different partitions should be evaluated before 

implementing the heuristic for planning purposes. 

 

This research leads to several directions for the future work. First, other partitioning algorithms 

that aim to simultaneously minimize boundary nodes and inter-flow can be explored. Second, 

alternative approximation algorithms can be studied that reduce the number of artificial links 

generated by DSTAP and thus improving the convergence rate and the computational efficiency 

of the algorithm. Third, a theoretical analysis of the heuristic gap can be performing including 

questions like finding an upper bound on the heuristic gap given a partitioning algorithm and a 

network and finding appropriate partitioning algorithms that reduce this heuristic gap below a 

threshold. Last, based on the data availability, the transferability of the performance of DSTAP 

with a selected partitioning algorithm should be tested from one megaregion to the other. 

  



40 

References 
 

1. A. C. Nelson. Megaregion Projections 2015 to 2045 with Transportation Policy 

Implications. Transportation Research Record: Journal of the Transportation Research 

Board, (2654), 11-19, 2017. 

2. Regional Plan Association, Megaregions, 

http://www.america2050.org/content/megaregions.html. Accessed on December 27, 

2018. 

3. A. Nelson and R. Lang. Megapolitan America. Routledge. 2011. 

4. M. Dewar and D. Epstein. Planning for “megaregions” in the United States. Journal of 

Planning Literature, 22(2), 108-124, 2007. 

5. G. D. Nelson, and A. Rae. An economic geography of the United States: From commutes 

to megaregions. PloS one, 11(11), e0166083, 2016. 

6. E. Jafari, V. Pandey, and S. D. Boyles. A decomposition approach to the static traffic 

assignment problem. Transportation Research Part B: Methodological, 105, 2017. 

7. M. Beckmann, C. B. McGuire, and C. B. Winsten. Studies in the Economics of 

Transportation. Yale University Press, 1956. 

8. H. Bar-Gera. Origin-based algorithm for the traffic assignment problem. Transportation 

Science, 36(4), 2002. 

9. R. B. Dial. A path-based user-equilibrium traffic assignment algorithm that obviates path 

storage and enumeration. Transportation Research Part B: Methodological, 40(10), 

2006. 

10. B. Colson, P. Marcotte, and G. Savard. An overview of bilevel optimization. Annals of 

Operations Research, 153(1), 2007. 

11. H. Bar-Gera. Traffic assignment by paired alternative segments. Transportation Research 

Part B: Methodological, 44(8-9), 2010. 

12. K. Abdelghany, H. Hashemi, and A. Alnawaiseh. Parallel all-pairs shortest path 

algorithm: Network decomposition approach. Transportation Research Record: Journal 

of the Transportation Research Board, 2567, 2016. 

13. S. D. Boyles. Bush-based sensitivity analysis for approximating subnetwork diversion. 

Transportation Research Part B: Methodological, 46(1), 2012. 

http://www.america2050.org/content/megaregions.html


41 

14. P. Johnson, D. Nguyen, and M. Ng. Large-scale network partitioning for decentralized 

traffic management and other transportation applications. Journal of Intelligent 

Transportation Systems, 20(5), 2016. 

15. M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research 

Logistics,3, 1956. 

16. R. Jayakrishnan, W. Tsai, J. Prasker, and S. Rajadhyaksha. A faster path-based algorithm 

for traffic assignment. Transportation Research Record: Journal of the Transportation 

Research Board, 1443, 1994. 

17. Y. M. Nie. A class of bush-based algorithms for the traffic assignment problem. 

Transportation Research Part B: Methodological, 44(1), 2010. 

18. G. Gentile. Local User Cost Equilibrium: A bush-based algorithm for traffic assignment. 

Transportmetrica A: Transport Science, 10(1), 2014. 

19. H. Zheng and S. Peeta. Cost scaling based successive approximation algorithm for the 

traffic assignment problem. Transportation Research Part B: Methodological, 68, 2014. 

20. M. Josefsson and M. Patriksson. Sensitivity analysis of separable traffic equilibrium 

equilibria with application to bilevel optimization in network design. Transportation 

Research Part B: Methodological, 41(1), 2007. 

21. R. Chen and R. R. Meyer. Parallel optimization for traffic assignment. Mathematical 

Programming, 42(1), 1988. 

22. P. A. Lotito. Issues in the implementation of the DSD algorithm for the traffic assignment 

problem. European Journal of Operational Research, 175(3), December 2006. 

23. H. Etemadnia, K. Abdelghany, and A. Hassan. A network partitioning methodology for 

distributed traffic management applications. Transportmetrica A: Transport Science, 

10(6), 2014. 

24. N. Garg, V. V. Vazirani, andM. Yannakakis. Approximate max-flow min-(multi) cut 

theorems and their applications. SIAM Journal on Computing, 25(2), 1996. 

25. M. Saeedmanesh and N. Geroliminis. Clustering of heterogeneous networks with 

directional flows based on “snake” similarities. Transportation Research Part B: 

Methodological, 91, 2016. 

26. G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning 

irregular graphs. SIAM Journal on scientific Computing, 20(1), 1998. 



42 

27. D. A. Spielman. Spectral graph theory and its applications. IEEE, 2007. 

28. D. A. Spielman and S. Teng. Spectral partitioning works: Planar graphs and finite 

element meshes. Linear Algebra and its Applications, 421(2-3), 2007. 

29. M. E. J. Newman. Spectral methods for community detection and graph partitioning. 

Physical Review E, 88(4), 2013. 

30. U. Von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4), 2007. 

31. J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on 

pattern analysis and machine intelligence, 22(8), 2000. 

32. M. G.H. Bell, F. Kurauchi, S. Perera, and W. Wong. Investigating transport network 

vulnerability by capacity weighted spectral analysis. Transportation Research Part B: 

Methodological, 99, 2017. 

33. S.Martinez, G. Chatterji, D. Sun, and A.M. Bayen. A weighted-graph approach for 

dynamic airspace configuration. In Proceedings of the AIAA Conference on Guidance, 

Navigation, and Control (GNC). American Institute of Aeronautics and Astronautics, 

2007. 

34. Y. Ma, Y. Chiu, and X. Yang. Urban traffic signal control network automatic partitioning 

using laplacian eigenvectors. In Intelligent Transportation Systems, 2009. ITSC’09. 12th 

International IEEE Conference On Intelligent Transportation Systems. IEEE, 2009. 

35. E. Jafari and S. D. Boyles. Improved bush-based methods for network contraction. 

Transportation Research Part B: Methodological, 83, 2016. 

36. H. Bar-Gera. Transportation network test problems. http://www.bgu.ac.il/bargera/tntp/, 

2017. 

37. D. Boyce, B. Ralevic-Dekic, and H. Bar-Gera. Convergence of traffic assignments: how 

much is enough?. Journal of Transportation Engineering, 130(1), 49-55, 2004. 

38. M. Patriksson. The traffic assignment problem: models and methods. Courier Dover 

Publications. 2015. 

39. G. De Luca and M. Gallo. Artificial neural networks for forecasting user flows in 

transportation networks: Literature review, limits, potentialities and open challenges. In 

Models and Technologies for Intelligent Transportation Systems (MT-ITS), 2017 5th 

IEEE International Conference on (pp. 919-923). IEEE, 2017 



43 

40. C. H. Chapman and O. B. Downs. U.S. Patent No. 7,831,380. Washington, DC: U.S. 

Patent and Trademark Office, 2010. 

41. J. C. Herrera, D. B. Work, R. Herring, X. J. Ban, Q. Jacobson, and A. M. Bayen. 

Evaluation of traffic data obtained via GPS-enabled mobile phones: The Mobile Century 

field experiment. Transportation Research Part C: Emerging Technologies, 18(4), 568-

583, 2010. 

42. Z. Wang, S. Y. He, and Y. Leung. Applying mobile phone data to travel behaviour 

research: A literature review. Travel Behaviour and Society, 11, 141-155, 2018. 

43. P. S. Castro, D. Zhang, and S. Li. Urban traffic modelling and prediction using large 

scale taxi GPS traces. In International Conference on Pervasive Computing (pp. 57-72). 

Springer, Berlin, Heidelberg, 2012. 

44. D. Woodard, G. Nogin, P. Koch, D. Racz, M. Goldszmidt, and E. Horvitz. Predicting 

travel time reliability using mobile phone GPS data. Transportation Research Part C: 

Emerging Technologies, 75, 30-44, 2017. 

45. S. Carrese, E. Cipriani, L. Mannini, and M. Nigro. Dynamic demand estimation and 

prediction for traffic urban networks adopting new data sources. Transportation Research 

Part C: Emerging Technologies, 81, 83-98, 2017. 

46. R. Harrison, D. Johnson, L. Loftus-Otway, N. Hutson, D. Seedah, M. Zhang, and C. 

Lewis. Megaregion freight planning: A synopsis (No. FHWA/TX-11/0-6627-1), 2012. 

47. Z. Zhang, K. Spansel, and B. Wolshon. Megaregion network simulation for evacuation 

analysis. Transportation Research Record: Journal of the Transportation Research 

Board, (2397), 161-170, 2013. 

48. Z. Zhang and B. Wolshon. Gulf Coast Megaregion Evacuation Traffic Simulation 

Modeling and Analysis (No. SWUTC/15/600451-00101-1). Southwest Region University 

Transportation Center (US), 2015. 

49. Z. Zhang and B. Wolshon. Analysis of Evacuation Clearance Time under Megaregion 

Disaster Threats (No. SWUTC/16/600451-00114-1). Southwest Region University 

Transportation Center (US), 2016. 

50. H. Zheng. Adaptation of network simplex for the Traffic Assignment Problem. 

Transportation Science, 49(3), 543-558, 2015. 



44 

51. J. Xie and C. Xie. Origin-based algorithms for traffic assignment: algorithmic structure, 

complexity analysis, and convergence performance. Transportation Research Record: 

Journal of the Transportation Research Board, (2498), 46-55, 2015. 

52. B. Javani and A. Babazadeh. Origin-destination-based truncated quadratic programming 

algorithm for traffic assignment problem. Transportation Letters, 9(3), 166-176, 2017. 

53. C. N. Yahia, V. Pandey, and S. D. Boyles. Network Partitioning Algorithms for Solving 

the Traffic Assignment Problem using a Decomposition Approach. Transportation 

Research Record, 0361198118799039, 2018. 

 

 


	Structure Bookmarks
	Technical Report Documentation Page 
	Chapter 1. Introduction 
	Chapter 2. Partitioning 
	2.1. Background 
	2.2. Literature review 
	2.3. Network partitioning for decentralized traffic assignment 
	2.3.1. Decomposition approach to the static traffic assignment problem (DSTAP) 
	2.3.2. Partitioning algorithms 

	2.4. Demonstrations 
	2.4.1. Computation time per DSTAP iteration 
	2.4.2.DSTAP convergence rate 

	2.5 Conclusion 

	Chapter 3 Decomposition Algorithm and Heuristic 
	3.1. Background 
	3.2. Literature review 
	3.3. DSTAP as algorithm 
	3.3.1 DSTAP example 
	3.3.2 DSTAP for Megaregions 

	3.4. Modified DSTAP as a heuristic 
	3.5. Comparison of partitioning algorithms 
	3.6. Conclusion 

	Chapter 4. Conclusion and Recommendations 




Accessibility Report


		Filename: 

		Beyond Political Boundaries.pdf




		Report created by: 

		

		Organization: 

		




[Enter personal and organization information through the Preferences > Identity dialog.]


Summary


The checker found problems which may prevent the document from being fully accessible.


		Needs manual check: 2

		Passed manually: 0

		Failed manually: 0

		Skipped: 1

		Passed: 28

		Failed: 1




Detailed Report


		Document



		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Needs manual check		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Needs manual check		Document has appropriate color contrast

		Page Content



		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms



		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text



		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables



		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Failed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists



		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings



		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting






Back to Top


